:优秀的一次函数教案在你眼前,你能错过吗?以下内容是本站范文为您带来的6篇《八年级《一次函数》教学设计》,希望能为您的思路提供一些参考。
一次函数教案 篇一
教学目标
1.知识与技能
能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”.
2.过程与方法
经历探索一次函数的应用问题,发展抽象思维.
3.情感、态度与价值观
培养变量与对应的,形成良好的函数观点,体会一次函数的应用价值.
重、难点与关键
1.重点:一次函数的应用.
2.难点:一次函数的应用.
3.关键:从数形结合分析思路入手,提升应用思维.
教学方法
采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用.
教学过程
一、范例点击,应用所学
例5小芳以米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象.
y=
例6A城有肥料吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡.从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?
解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(-x)吨.B城运往C、D乡的肥料量分别为(240-x)吨与(60+x)吨.y与x的关系式为:y=20x+25(-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤).
由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元.
拓展:若A城有肥料300吨,B城有肥料吨,其他条件不变,又应怎样调运?
二、随堂练习,巩固深化
课本P119练习.
三、课堂,发展潜能
由学生自我本节课的表现.
四、布置作业,专题突破
课本P120习题14.2第9,10,11题.
板书设计
14.2.2一次函数(4)
1、一次函数的应用例:
练习:
一次函数教案 篇二
一、教材分析
本节内容共安排2个课时完成。该节内容是二元一次方程(组)与一次函数及其图像的综合应用。通过探索方程与函数图像的关系,培养学生数学转化的思想,通过二元一次方程方程组的图像解法,使学生初步建立了数(二元一次方程)与形(一次函数的图像(直线))之间的对应关系,进一步培养了学生数形结合的意识和能力。本节要注意的是由两条直线求交点,其交点的横纵坐标为二元一次方程组的近似解,要得到准确的结果,应从图像中获取信息,确立直线对应的函数表达式即方程,再联立方程应用代数方法求解,其结果才是准确的。
二、学情分析
学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解二元一次方程和一次函数之间的内在联系,体会数和形间的相互转化,从中使学生进一步感受到数的问题可以通过形来解决,形的问题也可以通过数来解决。
三、目标分析
1、教学目标
知识与技能目标
(1) 初步理解二元一次方程和一次函数的关系;
(2) 掌握二元一次方程组和对应的两条直线之间的关系;
(3) 掌握二元一次方程组的图像解法。
过程与方法目标
(1) 教材以问题串的形式,揭示方程与函数间的相互转化,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法;
(2) 通过做一做引入例1,进一步发展学生数形结合的意识和能力。
(3) 情感与态度目标
(1) 在探究二元一次方程和一次函数的对应关系中,在体会近似解与准确解中,培养学生勤于思考、精益求精的精神。
(2) 在经历同一数学知识可用不同的数学方法解决的过程中,培养学生的创新意识和变式能力。
2、教学重点
(1)二元一次方程和一次函数的关系;
(2)二元一次方程组和对应的两条直线的关系。
3、教学难点
数形结合和数学转化的思想意识。
四、教法学法
1、教法学法
启发引导与自主探索相结合。
2、课前准备
教具:多媒体课件、三角板。
学具:铅笔、直尺、练习本、坐标纸。
五、教学过程
本节课设计了六个教学环节:第一环节 设置问题情境,启发引导;第二环节 自主探索,建立方程与函数图像的模型;第三环节 典型例题,探究方程与函数的相互转化;第四环节 反馈练习;第五环节 课堂小结;第六环节 作业布置。
第一环节: 设置问题情境,启发引导
内容:1.方程x+y=5的解有多少个? 是这个方程的解吗?
2、点(0,5),(5,0),(2,3)在一次函数y= 的图像上吗?
3、在一次函数y= 的图像上任取一点,它的坐标适合方程x+y=5吗?
4、以方程x+y=5的解为坐标的所有点组成的图像与一次函数y= 的图像相同吗?
由此得到本节课的第一个知识点:
二元一次方程和一次函数的图像有如下关系:
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程。
意图:通过设置问题情景,让学生感受方程x+y=5和一次函数y= 相互转化,启发引导学生总结二元一次方程与一次函数的对应关系。
效果:以问题串的形式,启发引导学生探索知识的形成过程,培养了学生数学转化的思想意识。
前面研究了一个二元一次方程和相应的一个一次函数的关系,现在来研究两个二元一次方程组成的方程组和相应的两个一次函数的关系。顺其自然进入下一环节。
第二环节 自主探索方程组的解与图像之间的关系
内容:1.解方程组
2、上述方程移项变形转化为两个一次函数y= 和y=2x ,在同一直角坐标系内分别作出这两个函数的图像。
3、方程组的解和这两个函数的图像的交点坐标有什么关系?由此得到本节课的第2个知识点:二元一次方程和相应的两条直线的关系以及二元一次方程组的图像解法;
(1) 求二元一次方程组的解可以转化为求两条直线的交点的横纵坐标;
(2) 求两条直线的交点坐标可以转化为求这两条直线对应的函数表达式联立的二元一次方程组的解。
(3) 解二元一次方程组的方法有:代入消元法、加减消元法和图像法三种。
注意:利用图像法求二元一次方程组的解是近似解,要得到准确解,一般还是用代入消元法和加减消元法解方程组。
意图:通过自主探索,使学生初步体会数(二元一次方程)与形(两条直线)之间的对应关系,为求两条直线的交点坐标打下基础。
效果:由学生自主学习,十分自然地建立了数形结合的意识,学生初步感受到了数的问题可以转化为形来处理,反之形的问题可以转化成数来处理,培养了学生的创新意识和变式能力。
第三环节 典型例题
探究方程与函数的相互转化
内容:例1 用作图像的方法解方程组
例2 如图,直线 与 的交点坐标是 。
意图:设计例1进一步揭示数的问题可以转化成形来处理,但所求解为近似解。通过例2,让学生深刻感受到由形来处理的困难性,由此自然想到求这两条直线对应的函数表达式,把形的问题转化成数来处理。这两例充分展示了数形结合的思想方法,为下一课时解决实际问题作了很好的铺垫。
效果:进一步培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化。
第四环节 反馈练习
内容:1.已知一次函数 与 的图像的交点为 ,则 。
2、已知一次函数 与 的图像都经过点A(2,0),且与 轴分别交于B,C两点,则 的面积为( )。
(A)4 (B)5 (C)6 (D)7
3、求两条直线 与 和 轴所围成的三角形面积。
4、如图,两条直线 与 的交点坐标可以看作哪个方程组的解?
意图:4个练习,意在及时检测学生对本节知识的掌握情况。
效果:加深了两条直线交点的坐标就是对应的函数表达式所组成的方程组的解的印象,培养了学生的计算能力和数学转化的能力,使学生进一步领悟到应用数形结合的思想方法解题的重要性。
第五环节 课堂小结
内容:以问题串的形式,要求学生自主总结有关知识、方法:
1、二元一次方程和一次函数的图像的关系;
(1) 以二元一次方程的解为坐标的点都在相应的函数图像上;
(2) 一次函数图像上的点的坐标都适合相应的二元一次方程。
2、方程组和对应的两条直线的关系:
(1) 方程组的解是对应的两条直线的交点坐标;
(2) 两条直线的交点坐标是对应的方程组的解;
3、解二元一次方程组的方法有3种:
(1)代入消元法;
(2)加减消元法;
(3)图像法。 要强调的是由于作图的不准确性,由图像法求得的解是近似解。
意图:旨在使本节课的知识点系统化、结构化,只有结构化的知识才能形成能力;使学生进一步明确学什么,学了有什么用。
第六环节 作业布置
习题7.7
附: 板书设计
六、教学反思
本节课在学生已有了解方程(组)的基本能力和一次函数及其图像的基本知识的基础上,通过教师启发引导和学生自主学习探索相结合的方法,进一步揭示了二元一次方程和函数图像之间的对应关系,从而引出了二元一次方程组的图像解法,以及应用代数方法解决有关图像问题,培养了学生数形结合的意识和能力,充分展示了方程与函数的相互转化。教学过程中教师一定要讲清楚图像解法的局限性,这是由于画图的不准确性,所求的解往往是近似解。因此为了准确地解决有关图像问题常常把它转化为代数问题来处理,如例2及反馈练习中的4个问题。
一次函数的概念优秀教学设计 篇三
一.教材分析
函数是数学中最重要的概念之一,且贯穿在中学数学的始终,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,结合教学课程标准与学生的认知水平,函数的第一课应以函数概念的理解为中心进行教学。
二、学情分析
从学生知识层面看:学生在初中初步探讨了函数的相关知识,通过高一 “集合”的学习,对集合思想的认识也日渐提高,为重新定义函数提供了知识保证。
从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力。
三、教学目标
知识与技能:让学生理解构成函数的三要素、函数概念的本质、抽象的函数符号f(x)的意义。
过程与方法:在教师设置的问题引导下,学生通过自主学习交流,反馈精讲、当堂训练,经历函数概念的形成过程,渗透归纳推理的数学思想,发展学生的抽象思维能力。
情感态度价值观:在学习过程中,学会数学表达和交流,体验获得成功的乐趣,建立自信心。
四、教学难重点 重点:理解函数的概念;
难点:概念的形成过程及理解函数符号y = f (x)的含义。
[重难点确立的依据]:函数的概念抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在和函数的概念及函数符号的理解与运用上。
从多个角度创设多个问题情境,组织学生围绕重点自主思考,让学生自主、合作探索,体会函数概念的本质从而突破难点。
五、教法与学法选择
充分尊重学生的主体地位,让学生在教师设置的问题的引导下、通过自主学习等环节自主构建知识体系,自主发展数学思维,教师采用问题教学法、探究教学法、交流讨论法等多种学习方法,充分调动学生的积极性。
六、教学过程设计 引入
现实世界是充满变化的,函数是描述变化规律的重要数学模型,也是数学的基本概念,也是基本思想,另外函数的概念也是不断发展的。引出课题
问题提出
1、请回忆在初中我们学过那些函数? (学生回答老师补充)
2、回忆初中函数的定义是什么? 一般地,设在一个变化过程中有两个变量x、y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
知识探究一 函数
给定两个非空的数集A,B,如果按照某个对应关系f,对于集合A中的任何一个数x,在集合B中都有唯一确定的数f(x)与之对应,那么就把对应关系f叫做定义在集合A上的函数记作f:A→B 或y=f(x),x∈A. 其中,x叫做自变量,与x值相对应的f(x)值叫做函数值。 x的取值范围称为定义域,函数值f(x)的取值范围称为值域。 定义理解一——y=f(x) 1.x是自变量,它是法则所施加的对象。
2.f是对应法则,它可以是解析式,可以是表格,也可以是图像。
3.y=f(x)表示y是x的函数,不是f与x的乘积。f(x)只是函数值,f才是函数,()表示f对自变量x作用。
定义理解二——唯一确定
通过三个例子和学生共同总结出:
1、函数中每个x与y的对应关系,可以是一对一,也可以是多对一,但不能是一对多,即y是唯一确定的
2.A中元素不能剩,B中元素可以剩下。
定义理解三——定义域值域
根据定义,函数是两个数集A,B间的对应关系
自变量的集合A叫做函数的定义域;函数值的集合{f(x)|x∈A}叫做函数的值域。 例如:A={0,1,2},B={0,2,4,5},f:A→B f(x)=2x
定义域为{0,1,2},值域为{0,2,4} 从而共同探究出:值域是集合B的子集
函数的三要素:
定义域、对应关系、值域;
函数的值域由函数的定义域和对应关系所确定; 定义域相同,对应关系完全一致,则两个函数相等。 f(x)=3x+1与f(t)=3t+1是同一个函数。 x2f(x)=x与f(x)=不是同一个函数。 x然后和学生共同探究常见的已学函数的定义域和值域:
知识探究二 区间
(设a, b为实数,且a
例题:试用区间表示下列数集:
(1){x|x ≤ -1或5 ≤ x<6} (2) {x|x ≥9} (3) {x|1 (5) {x|x≥0且x≠1} 练习作业:把常见的函数的定义域和值域用区间表示。 七、小结 1、用集合的语言描述函数的概念 2.函数的三要素 3.用区间表示数集 八、作业 1.P28 练习1,2 2.P34习题2-1A组:1,2 14.2.2一次函数(1) 1、一次函数的概念例: 2、一次函数与正比例函数的关系练习: 一、教材分析 1、地位和作用 这一节内容是初中数学新教材八年级上册第十四章第三节的内容。它是在学生学习了前面一节一次函数后,回过头重新认识已经学习过的一些其他数学概念,即通过讨论一次函数与一元一次不等式的关系,从运动变化的角度,用函数的观点加深对已经学习过的不等式的认识,构建和发展相互联系的知识体系。它不是简单的回顾复习,而是居高临下的进行动态分析。 2、活动目标 ①理解一次函数与一元一次不等式的关系。会根据一次函数图像解决一元一次不等式解决问题。 ②学习用函数的观点看待不等式的方法,初步形成用全面的观点处理局部问题。 ③经历不等式与函数问题的探讨过程,学习用联系的观点看待数学问题的辨证思想。 ④增强学生学数学,用数学,探索数学奥妙的愿望,体验成功的感觉,品尝成功的喜悦。 总的来讲,希望达到张孝达对我们教育工作者的要求:给我们所有的学生,一双能用数学视角观察世界的眼睛,一个能用数学思维思考世界的大脑。 3、教学重点 (1).理解一元一次不等式与一次函数的转化关系及本质联系 (2).掌握用图象求解不等式的方法. 教学难点:图象法求解不等式中自变量取值范围的确定. 二、学情分析 八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。 三、学法分析 1、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。 2、学生在小组合作学习中体验学习的快乐。合作交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。 四、教法分析 由于任何一个一元一次不等式都能写成ax+b>0(或<0)的形式,而此式的左边与一次函数y=ax+b的右边一致,所以从变化与对应的观点考虑问题,解一元一次不等式也可以归结为两种认识: ⑴从函数值的角度看,就是寻求使一次函数y=ax+b的值大于(或小于0)的自变量x的取值范围。 ⑵从函数图像的角度看,就是确定直线y=ax+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。 教学过程中,主要从以上两个角度探讨一元一次不等式与一次函数的关系。 1、“动”———学生动口说,动脑想,动手做,亲身经历知识发生发展的过程。 2、“探”———引导学生动手画图,合作讨论。通过探究学习激发强烈的探索欲望。 3、“乐”———本节课的设计力求做到与学生的生活实际联系紧一点,直观多一点,动手多一点,使学生兴趣高一点,自信心强一点,使学生乐于学习,乐于思考。 4、“渗”———在整个教学过程中,渗透用联系的观点看待数学问题的辨证思想。 教材分析 1、 本节课首先从最简单的正比例函数入手、从正比例函数的定义、函数关系式、引入次函数的概念。 2、 八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。 学情分析 1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。 2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。 3、学生认知障碍点:根据问题信息写出一次函数的表达式。 教学目标 1、 理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。 2、 能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。 3、 经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。 教学重点和难点 1、一次函数、正比例函数的概念及关系。 2、会根据已知信息写出一次函数的表达式。 教学过程 读书破万卷下笔如有神,以上就是本站范文为大家带来的6篇《八年级《一次函数》教学设计》,希望对您有一些参考价值。板书设计 篇四
一次函数教案 篇五
八年级《一次函数》教学设计 篇六